Yolo-V4 Installation On Ubuntu 18.04
4 min readMar 12, 2021
Hello friends, Installation of YOLOv4 on Ubuntu 18.04.
Pre-Requirements:
- Python 3.6
- Git
- CMake >=3.12
- CUDA >= 10.0
- CuDNN 7.6.5
- OpenCV 4.0.0
- OpenCV Contrib (latest)
- YOLOv4
- Last but not least a good internet connection
Steps are as follows:
Step 1: Install Git
- sudo apt update
sudo apt-get install git
Step 2: Install Nvidia Driver using following commands:-
- ubuntu-drivers devices
- then select the recommended drivers
- Example command => “sudo apt-get install nvidia-driver-460”
Step 3: Install CUDA 10.0
- link for cuda file(cuda-10.0)
- After Successful downloading all the files open terminal in that location where your file downloaded and type “sudo sh ‘CUDA filename’”
- First select “accept” for Eula options
- then select ’n’ / no for graphic installation
- then select “y” / yes for all others options
- press enter for default locations.
- copy all the lines and paste in bashrc file and save the file if this are not already available in your bashrc file.
- # NVIDIA CUDA Path
- export PATH=/usr/local/cuda-10.0/bin:$PATH
- export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64
Step 4: Install CuDNN
- To install CuDNN you have to download 3 files are as follows:
- cuDNN Runtime Library for Ubuntu18.04 (Deb)
- cuDNN Developer Library for Ubuntu18.04 (Deb)
- cuDNN Code Samples and User Guide for Ubuntu18.04 (Deb) (Not Mandatory)
- After Successful downloading all the files open terminal in that location where your file downloaded and type “sudo dpkg -i ‘cuDNN Runtime file name’ “ and press enter.
- then type same command with the 2nd file name is developer file (dev file).
- and also same command for the 3rd file name I.e document file(Sample file).
- After all, type “nvidia-smi” and press enter to be sure you have installed nvidia graphic driver.
- Now, type “nvcc — version” that will show you the CUDA version that installed in your system.
Step 5: Now time to install OpenCV by build, follow these commands
- sudo apt-get update
- sudo apt-get upgrade
- sudo apt-get install build-essential cmake unzip pkg-config
- sudo apt-get install libjpeg-dev libpng-dev libtiff-dev
- sudo apt-get install libjasper-dev
- sudo add-apt-repository “deb http://security.ubuntu.com/ubuntu xenial-security main”
- sudo apt update
- sudo apt install libjasper1 libjasper-dev
- sudo apt-get install libavcodec-dev libavformat-dev libswscale-dev libv4l-dev
- sudo apt-get install libxvidcore-dev libx264-dev
- sudo apt-get install libgtk-3-dev
- sudo apt-get install libatlas-base-dev gfortran
- sudo apt-get install python3.6-dev
- wget -O opencv.zip https://github.com/opencv/opencv/archive/4.0.0.zip
- wget -O opencv_contrib.zip https://github.com/opencv/opencv_contrib/archive/4.0.0.zip
- unzip opencv.zip
- unzip opencv_contrib.zip
- mv opencv-4.0.0 opencv
- mv opencv_contrib-4.0.0 opencv_contrib
- wget https://bootstrap.pypa.io/get-pip.py
- sudo python3 get-pip.py
- sudo pip install virtualenv virtualenvwrapper
- sudo rm -rf ~/get-pip.py ~/.cache/pip
- echo -e “\n# virtualenv and virtualenvwrapper” >> ~/.bashrc
- echo “export WORKON_HOME=$HOME/.virtualenvs” >> ~/.bashrc
- echo “export VIRTUALENVWRAPPER_PYTHON=/usr/bin/python3” >> ~/.bashrc
- echo “source /usr/local/bin/virtualenvwrapper.sh” >> ~/.bashrc
- source ~/.bashrc
- mkvirtualenv cv -p python3
- workon cv
- pip install numpy
- cd opencv
- mkdir build
- cd build
- cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_opencv_python2=OFF -D INSTALL_C_EXAMPLES=OFF -D OPENCV_ENABLE_NONFREE=ON -D OPENCV_EXTRA_MODULES_PATH=/home/antpc/tf/opencv/opencv_contrib/modules -D PYTHON_DEFAULT_EXECUTABLE=~/.virtualenvs/cv/bin/python -D BUILD_EXAMPLES=ON ..
- Once CMake finishes, it’s important that you inspect the output. Your output should look similar to mine below:
- (After Successful configuration and generating be sure it build with “Python3” and second thing is non-free algorithm is “yes”)
- make -j4 (Here 4 is the no. of cores),(To check your system cores type “nproc” in terminal and press enter)
- sudo make install
- sudo ldconfig
- ls /usr/local/python/cv2/python-3.6(to confirm this file “cv2.cpython-36m-x86_64-linux-gnu.so” )
- go to that location by using command “cd /usr/local/python/cv2/python-3.6”
- sudo mv cv2.cpython-36m-x86_64-linux-gnu.so cv2.so
- cd ~/.virtualenvs/cv/lib/python3.6/site-packages/
- ln -s /usr/local/python/cv2/python-3.6/cv2.so cv2.so
- Now Test your OpenCV installation
- workon cv
- python
- import cv2
- cv2.__version__
- quit()
Step 6: Darknet YOLOv4 installation Steps:
- Goto this link and download the repo in zip “https://github.com/AlexeyAB/darknet/tree/darknet_yolo_v4_pre"
- unzip downloaded file “darknet_yolo_v4_pre”
- open terminal on that folder and activate your virtualenvs by this command==>
- workon cv
- sudo apt install libopencv-dev python3-opencv
- sudo apt install make git g++
- on the folder open make file and change these ==>
GPU=1,
CUDNN=1, CUDNN_HALF=1, OPENCV=1, LIBSO=1.- make
- mkdir build_release
- cd build_release
- sudo apt remove cmake
- pip install cmake — upgrade
- type “which cmake” and add that path in the .bashrc file that are in home location.
- cmake ..
- make
- copy the darknet and libdark.so from the build_release to the darknet folder.
- You also have to rename ( libdark.so -> libdarknet.so )
- Confirm your installation by going to the darknet folder with same “cv environment” and type “python” and then “import darknet”.
Thank You✌